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ALMOST ENVY-FREENESS WITH GENERAL VALUATIONS∗
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Abstract. The goal of fair division is to distribute resources among competing players in a
“fair” way. Envy-freeness is the most extensively studied fairness notion in fair division. Envy-free
allocations do not always exist with indivisible goods, motivating the study of relaxed versions of
envy-freeness. We study the envy-freeness up to any good (EFX) property, which states that no
player prefers the bundle of another player following the removal of any single good, and prove the
first general results about this property. We use the leximin solution to show existence of EFX
allocations in several contexts, sometimes in conjunction with Pareto optimality. For two players
with valuations obeying a mild assumption, one of these results provides stronger guarantees than
the currently deployed algorithm on Spliddit, a popular fair division website. Unfortunately, finding
the leximin solution can require exponential time. We show that this is necessary by proving an
exponential lower bound on the number of value queries needed to identify an EFX allocation, even
for two players with identical valuations. We consider both additive and more general valuations,
and our work suggests that there is a rich landscape of problems to explore in the fair division of
indivisible goods with different classes of player valuations.
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1. Introduction. Fair division has a long history, with the earliest known mech-
anism for solving the problem dating back to the Bible. No, not war—the cut-and-
choose protocol. When Abraham and Lot first arrive in the land of Canaan, Abraham
suggests that they divide the land between them. Abraham partitions the land into
two parts and lets Lot choose which part he would like to keep.

What makes this procedure fair? By dividing the land into two pieces he values
equally, Abraham can ensure that he will not envy Lot’s piece, regardless of which
piece Lot takes. Since Lot presumably chooses his favorite piece, he will not envy
Abraham. This means that the cut-and-choose protocol guarantees an envy-free allo-
cation, meaning that each player likes their allocation at least as much as any other
player’s allocation.

The cut-and-choose protocol is defined for two players and divisible goods, mean-
ing that each good can be divided into arbitrarily small pieces. In this paper, we
consider the setting of indivisible goods, meaning that the resource in question is a
set of discrete goods, each of which must be wholly allocated to a single player. Un-
fortunately, envy-freeness cannot be guaranteed in this setting. We see this even with
two players and a single good: one player must receive the good, and the other will
surely be envious.

Consequently, other notions of fairness are needed. Budish [7] introduced the
concept of envy-freeness up to one good (EF1). In an EF1 allocation, player i may
envy player j, but the envy could be eliminated by removing a single good from player
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1040 BENJAMIN PLAUT AND TIM ROUGHGARDEN

j’s allocation. The good is not actually removed; this is a thought experiment used in
the definition of envy-freeness up to one good. An EF1 allocation always exists and
can be computed in polynomial time [23].1

Caragiannis et al. [11] proposed another fairness criterion, one which is strictly
stronger than EF1 but strictly weaker than full envy-freeness. An allocation is envy-
free up to any good (EFX) if for any i, j where player i envies player j, removing any
good from j’s allocation would eliminate i’s envy. Do EFX allocations always exist?
This paper takes the first steps toward answering this question.

1.1. Applications. The nonprofit website Spliddit (www.spliddit.org) is one of
the most promising applications of fair division theory [20]. Spliddit implements mech-
anisms for several fair division problems: rent division [19], taxi fare division, credit
assignment (i.e., for a group project or academic paper) [14], task distribution [29, 9],
and distribution of indivisible goods. These mechanisms are available for public use
at no cost: users can simply log in, define what is to be divided, and enter their
valuations. Since the site’s launch in November 2014, there have been over 60,000
users [11]. The company Fair Outcomes (http://www.fairoutcomes.com) offers fair
division services in a similar vein.

Another compelling fair division application is allocating courses among students.
Students have preferences regarding which courses they would like to take, but each
course has a limited capacity. The Wharton School at the University of Pennsylvania
now uses a theoretically grounded mechanism titled Course Match to fairly allocate
courses among MBA students, which has led to demonstrably higher satisfaction and
perceived fairness among students [7, 8].

A major selling point of these services is that their solutions are guaranteed to
satisfy certain fairness properties. For example, in the case of distribution of indivis-
ible goods on Spliddit, users know that the solution will be envy-free up to one good
and Pareto optimal [11]. Our hope is that further work in the area of fair division
of indivisible goods will allow user-facing services like Spliddit, Fair Outcomes, and
Course Match to offer users even stronger fairness guarantees.

1.2. Prior work. A detailed survey of the fair division literature is outside the
scope of this paper, and we discuss only the works most closely related to ours. See,
e.g., [5, 26, 6] for further background.

Lipton et al. [23] gave an algorithm whose solution is guaranteed to be EF1 for
general valuations. By a valuation, we mean a function specifying a player’s value
for each bundle she might receive. By general, we mean that the only assumptions
imposed on valuation functions are normalization (the value of the empty set is 0)
and monotonicity (adding goods to a bundle cannot make it worse).

Their algorithm allocates the goods in rounds and ensures that the partial allo-
cation at the end of each round is EF1. At the beginning of each round, an unenvied
player is identified; if no such player exists, there must be a cycle of envy, and bundles
can be swapped along such cycles until no cycles of envy remain. An arbitrary good
is then given to this unenvied player. This player may become envied after receiving
this good, but the envy could be eliminated by removing the good she just received
(since she was unenvied prior to receiving that good). This ensures that whenever
player i envies player j, the envy could be eliminated by removing the most recent
good given to player j, so the resulting allocation is EF1.

1The algorithm of [23] was originally published in 2004 with a different property in mind, as the
EF1 property was not proposed until 2011 by [7].
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ALMOST ENVY-FREENESS WITH GENERAL VALUATIONS 1041

Table 1
A summary of our existence results. Here n is the number of players. “add”, “gen”, “id”, and

“nmu” refer to additive valuations, general valuations, identical valuations, and nonzero marginal
utility, respectively. “3” indicates that the type of allocation specified by the row is guaranteed to
exist in the setting specified by the column, while “7” indicates that we give a counterexample, and
“?” indicates an open question.

n = 2, add n = 2, gen n ≥ 2, gen + id n > 2, add n > 2, gen
1
2

EFX 3 (Thm. 4.3) 3 (Thm. 4.3) 3 (Thm. 4.2) 3 (Thm. A.2) ?

EFX 3 (Thm. 4.3) 3 (Thm. 4.3) 3 (Thm. 4.2) ? ?
EFX + PO (nmu) 3 (Thm. 5.5) 7 (Thm. 5.6) 3 (Thm. 5.4) ? 7 (Thm. 5.6)

Caragiannis et al. [11] studied the case where valuations are additive, meaning
that each player’s value for a set of goods is the sum of her values for the individual
goods. They showed that the allocation maximizing the product of players’ utilities
(the maximum Nash welfare solution) is guaranteed to be both EF1 and Pareto opti-
mal (PO), assuming valuations are additive. In contrast, the algorithm of Lipton et
al. [23] does not guarantee a PO allocation.2

Caragiannis et al. [11] also proposed the fairness criterion of envy-freeness up to
any good and left the possible existence of EFX allocations as an open problem. We
are not aware of any results regarding EFX allocations prior to the conference version
of this paper, but this topic has received substantial interest since then [10, 12, 13, 28].

We briefly describe several other models for fair division of indivisible goods.
Brams, Kilgour, and Klamler [4] and Aziz et al. [1] assumed that players express only
an ordinal ranking over the goods, as opposed to exact values. Certain tasks become
easier in this domain, but important information is arguably lost by only considering
rankings. Randomized allocations have also been considered (e.g., [2, 9]), but this is
not suitable for the applications we are most interested in, where the outcome is only
used once. Dickerson et al. [15] took a probabilistic approach and showed that envy-
free allocations are likely to exist when the number of goods is at least a logarithmic
factor larger than the number of players. While illuminating, this does not directly
bear on our goal: determining when fair allocations are guaranteed to exist, and how
they can be computed.

1.3. Our contributions. We consider the EFX property in a variety of con-
texts; our main existence results are given in Table 1.

1.3.1. Exponential query complexity lower bound. Section 3 presents our
most technically involved result: an exponential lower bound on the number of value
queries required by a deterministic algorithm to find an EFX allocation. This is done
via a reduction from local search on a class of graphs known as the Odd graphs,
for which we prove an exponential lower bound. In combination with results due
to Dinh and Russell [16] and Valencia-Pabon and Vera [35], this yields an analogous
exponential lower bound for randomized algorithms. Dobzinski, Fu, and Kleinberg [17]
also use a local search reduction to prove a lower bound on the number of value queries
required to find a certain type of equilibrium in a simultaneous second price auction,
for bidders with XOS (i.e., fractionally subadditive) valuations. We hope that this

2Suppose there are two players with additive valuations v1, v2 over three goods, a, b, c, where
v1({a}) = 3, v1({b}) = 2, v1({c}) = 4 and v2({a}) = 4, v2({b}) = 3, v2({c}) = 2. The algorithm of
Lipton et al. [23] could first allocate a to player 1, then b to player 2, and finally c also to player 2.
The resulting allocation is EF1, but giving {c} to player 1 and {a, b} to player 2 would be better for
both players.
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1042 BENJAMIN PLAUT AND TIM ROUGHGARDEN

lower bound technique will be useful in other contexts as well.
Our lower bound holds even for two players with identical submodular valuations.

In stark contrast, the algorithm of Lipton et al. [23] finds an EF1 allocation in polyno-
mial time for general and possibly distinct valuations, and for any number of players.
This suggests that EFX is indeed a significantly stronger fairness guarantee than EF1
and deserves further study.

1.3.2. Positive EFX results. Many of our positive results rely on the leximin
solution. The leximin (a portmanteau of “lexicographic” and “maximin”) solution
selects the allocation which maximizes the minimum utility; then, if there are multiple
allocations which achieve that minimum utility, it chooses among those the allocation
which maximizes the second minimum utility, and so on. The leximin solution was
developed as a metric of fairness in and of itself [32, 33, 34] and has been used before
in fair division, though typically for randomized allocations (e.g., [2]).

In section 4, we show that when players have general but identical valuations, a
modification of the leximin solution is EFX. By identical valuations, we mean that all
players have the same valuation. This result also yields a cut-and-choose-based pro-
tocol for two players with general and possibly distinct valuations that is guaranteed
to produce an EFX allocation. This is consistent with our exponential lower bound,
as it is well known that finding the leximin solution can require exponential time for
general valuations (e.g., [18]).3

These positive results contrast with the state of the art for possibly distinct valu-
ations and three or more players, where even for additive valuations, the guaranteed
existence of an EFX allocation remains an open question (“despite significant effort,”
according to [11]).

1.3.3. EFX and Pareto optimality. In section 5, we consider Pareto opti-
mality. In economics, an outcome is PO if there is no way to make one player better
off without making another player worse off. We show that even in simple cases, it
is possible that no EFX allocation is also PO. However, these cases rely on a player
having zero value for a good being added to her bundle.

We propose the assumption that adding a good to a player’s bundle strictly
improves the player’s value for that bundle, and we refer to this as “nonzero marginal
utility.” We view this as quite a weak assumption: in real-world applications such as
divorce and inheritance settlements, the goods involved often have significant value
(cars, houses, paintings, etc.), so one might expect a player to always prefer to have
a good than not.

Under this assumption, we show that for two players with additive valuations, the
leximin solution is both EFX and PO.4 We also show that for any number of players
with general but identical valuations, the leximin solution is EFX and PO. Finally,
we give a counterexample where for two players with distinct general valuations, no
EFX allocation is PO (even assuming nonzero marginal utility).

1.3.4. Comparison to Spliddit in the two-player case. Perhaps of most
practical importance is our result that for two players with additive valuations and
nonzero marginal utility, the leximin solution is both EFX and PO. This provides

3We mention that section 6 shows that for two players with additive valuations, an EFX allocation
can be computed in polynomial time by a different method.

4When discussing the leximin solution for players with different valuations, we assume that each
player’s value for the entire set of goods is the same: were this not true, we could simply rescale the
valuations as needed and use the leximin solution over the rescaled valuations.
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ALMOST ENVY-FREENESS WITH GENERAL VALUATIONS 1043

a b c
player 1 5 3 1
player 2 5 1 3

Fig. 1. An instance where our algorithm provides stronger guarantees than the algorithm
currently deployed on Spliddit. Here two players have additive valuations over three goods, a, b, and
c. By symmetry, assume a is given to player 1. Spliddit selects the maximum Nash welfare solution,
which gives {a, b} to player 1 and {c} to player 2. This is EF1 and PO, but not EFX, since player 2
would still envy player 1 after the removal of b. Our algorithm returns the unique (up to symmetry)
EFX and PO allocation, which gives {a} to player 1 and {b, c} to player 2.

stronger guarantees than the currently deployed algorithm on Spliddit, which selects
the maximum Nash welfare solution, and only guarantees an allocation which is EF1
and PO.5

This manifests even in simple examples, such as the instance given by Figure 1.
By symmetry, assume that player 1 receives good a. The maximum Nash welfare
solution selects the allocation which maximizes the product of utilities: in this case,
that would give player 1 a and b, and player 2 only c. This allocation is EF1, because
player 2 would not envy player 1 if good a were removed from player 1’s bundle.
However, the allocation is not EFX, because player 2 would envy player 1 even if
good b were removed from player 1’s bundle.

In contrast, our algorithm returns the unique (up to symmetry) EFX and PO
allocation, which gives a to player 1 and b and c to player 2. We suggest that this is also
the more intuitively fair allocation. Furthermore, the assumption of nonzero marginal
utility seems especially reasonable in the case of two players with additive valuations:
if a player is truly indifferent to some good, one could imagine simply giving that good
to the other player and excluding it from the fair division process entirely.6 We do note
that Spliddit’s current algorithm does not require the assumption of nonzero marginal
utility, however. Neither approach has a clear advantage in terms of computational
efficiency: both the leximin solution and the maximum Nash welfare solution are
NP-hard to compute, even for two players with additive valuations.7

1.3.5. Additional results. In section 6, we show that EFX always exist and can
be computed in polynomial time when players have additive valuations and agree on
the ordinal ranking of the items (although they may disagree on the specific cardinal
values). We show how this algorithm can also be used to compute an EFX allocation
in polynomial time for two players with possibly distinct additive valuations. Finally,
in Appendix A, we propose an approximate version of EFX and show that a 1

2 -EFX
allocation always exists when players have subadditive (possibly distinct) valuations.8

5Spliddit only considers additive valuations. This is because each user need only report m values
to specify an entire additive valuation; in contrast, an exponential number of values can be required
to specify a general valuation.

6A vindictive player might object to this: she may be unhappy with the other player receiving a
good “for free,” even if she has zero value for the good herself. We argue that this constitutes having
nonzero value for the good and that a player has zero value for a good only if she is truly indifferent.

7For two players with identical additive valuations, the leximin solution gives each player half the
total value if and only if the valuation is a “yes” instance of the partition problem. The reduction is
less obvious for maximum Nash welfare; see, e.g., [31].

8The 1
2

-EFX algorithm presented here does not run in polynomial time; furthermore, the recent
paper [12] provided a polynomial-time algorithm for the same problem. However, we find it worth-
while to still include our algorithm (in an appendix), since it was present in the conference version
of this paper (which predates [12]).

D
ow

nl
oa

de
d 

05
/0

7/
23

 to
 1

03
.2

7.
9.

24
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1044 BENJAMIN PLAUT AND TIM ROUGHGARDEN

More broadly, our results span additive, submodular, subadditive, and general
valuations and identify separations between these classes from a fair division perspec-
tive. For example, we show that assuming nonzero marginal utility and two players
with additive valuations, an allocation which is both EFX and PO is guaranteed to
exist, while there is a counterexample for two players with general valuations. Such
valuation classes have already played a central role in the development of algorithmic
mechanism design over the past 15 years (e.g., [22]), and they may well prove equally
important in the fair division of indivisible goods.

2. Model. Let [k] denote the set {1, 2, . . . , k}. Let N = [n] be the set of players
and M be the set of goods, where m = |M |. We assume throughout the paper that
goods are indivisible: a good may not be split among multiple players. Each player
i has a value for each subset of M , specified as a valuation function vi : 2M →
R≥0. Throughout the paper, we assume normalization, meaning that vi(∅) = 0, and
monotonicity (a.k.a. “free disposal”), meaning that vi(S) ≤ vi(T ) whenever S ⊆ T .
When we refer to “general valuations,” we mean the set of all valuations that satisfy
these two properties.

A special type of valuation is an additive valuation, where vi(S) =
∑

g∈S vi({g})
for every S ⊆ M . Thus m parameters (one for each good) implicitly specify the 2m

values of the valuation. The majority of the literature on computational fair division,
with both divisible and indivisible goods, focuses on additive valuations. There are
also many interesting subclasses of valuations that generalize additive valuations. For
example, our main lower bound result (Theorem 3.10) holds for submodular valuations,
which are valuation functions v that satisfy “diminishing returns”:

v(S ∪ {x})− v(S) ≥ v(T ∪ {x})− v(T )

for every S ⊆ T and x /∈ T . One of our positive results, Theorem A.2, will hold for
subadditive valuations. A valuation v is subadditive if

v(S) + v(T ) ≥ v(S ∪ T ).

Every additive valuation is submodular, and every submodular valuation is subaddi-
tive.

An allocation A is a partition of M into n disjoint subsets, (A1, A2, . . . , An), where
Ai is the bundle given to player i. We refer to an allocation as partial if only a subset
S ⊆M of the goods is allocated. When “partial” is omitted, it means that all goods
have been allocated.

Our objective is to find a “fair” allocation. Many different notions of fairness have
been studied, with envy-freeness being one of the most prominent (see, e.g., [5, 26, 6]
for further background).

Definition 2.1. An allocation A is envy-free if for all i and j,

vi(Ai) ≥ vi(Aj).

We say that i envies j if vi(Ai) < vi(Aj). Unfortunately, an envy-free allocation
does not always exist in the context of indivisible goods. This is clear even with
two players and one good: the player who does not receive the good will envy the
other, assuming they both have nonzero value for the good. Furthermore, determin-
ing whether an envy-free allocation exists is NP-complete [3]: with two players and
identical additive valuations, this is the partition problem.

Consequently, a relaxed version of envy-freeness has been studied, called envy-
freeness up to one good [7, 11].
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ALMOST ENVY-FREENESS WITH GENERAL VALUATIONS 1045

Definition 2.2. An allocation A is envy-free up to one good (EF 1) if for all
i, j where i envies j,9

∃ g ∈ Aj such that vi(Ai) ≥ vi(Aj\{g}).

That is, i may envy j, but there is a good in j’s bundle such that if it were
removed, i would no longer envy j. An EF1 allocation always exists and can be
computed in polynomial time, even for general valuations [23].

Furthermore, Caragiannis et al. [11] showed that for additive valuations, an al-
location which is both EF1 and PO always exists; in particular, the maximum Nash
welfare solution [27, 21, 31] is guaranteed to satisfy both properties. Caragiannis et
al. [11] also proposed a new fairness notion, one which is strictly weaker than envy-
freeness but strictly stronger than EF1.

Definition 2.3. An allocation A is envy-free up to any good (EFX) if, for all
i, j,

∀g ∈ Aj , vi(Ai) ≥ vi(Aj\{g}).

In words, EFX demands that removing any good from j’s bundle would guarantee
that i does not envy j. Next, we define the standard notion of Pareto optimality.

Definition 2.4. An allocation A is PO if there is no other allocation B where

∀i ∈ [n], vi(Bi) ≥ vi(Ai), and

∃j ∈ [n], vj(Bj) > vj(Aj).

3. Query complexity lower bound. We begin with our most technically in-
volved result: an exponential lower bound on the number of value queries required
by any deterministic algorithm to compute an EFX allocation. Our lower bound will
hold even for two players, and even if their valuations are restricted to be identical
and submodular.10

In section 3.1, we introduce the local search problem that we will reduce from. In
section 3.2, we prove that finding an EFX allocation is at least as hard as solving local
search on a particular class of graphs. In section 3.3, we show that any deterministic
algorithm which finds a local maximum on this class of graphs requires an exponential
number of queries. This will imply that the problem of finding an EFX allocation has
exponential query complexity as well.

3.1. Local search. The Local Search problem takes as input an undirected
graph G = (V,E) and an oracle function f : V → R. The goal is to find a local
maximum a ∈ V , where f(a) ≥ f(b) for all (a, b) ∈ E. Since there exists a global
maximum, there must exist at least one local maximum. We are interested in the
number of queries required to find a local maximum, where a query to a ∈ V returns
f(a). Queries are the only method by which an algorithm can discover information
about f (i.e., it is given as a “black box”). All other operations are free in this model—
we count only the number of queries. Queries can be adaptive, with an algorithm’s
choice of which vertex to query next depending on the results of previous queries.

9The “where i envies j” clause is necessary, or the condition would technically fail when Aj = ∅.
This is not an issue for the definition of EFX, however.

10There is of course no hope for an exponential lower bound for additive valuations, since m value
queries suffice to reconstruct an entire additive valuation.
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1046 BENJAMIN PLAUT AND TIM ROUGHGARDEN

For a graph G, the deterministic query complexity of Local Search on G is
the minimum number of queries required by any deterministic algorithm to solve
Local Search on G (for a worst-case choice of f). Formally, let D[LS(G)] be
the deterministic query complexity of Local Search on G. Then D[LS(G)] =
minΓ maxf TLS(G, f,Γ), where the minimizer ranges over all deterministic algorithms Γ,
the maximizer ranges over all functions f : V → R, and TLS(G, f,Γ) is the number
of queries used by the algorithm Γ to find a local maximum of f on G.

The difficulty of local search depends on the graph G. The Kneser graph K(n, k)
is the graph whose vertices are the size k subsets of [n], where two vertices are adjacent
if and only if their corresponding subsets are disjoint. The star of our lower bound
argument is the Odd graph, K(2k+1, k). The most famous Odd graph is the Petersen
graph (Figure 2).

3.2. Local search on K(2k+1, k) reduces to finding an EFX allocation.
The EFX Allocation problem takes as input the set of players N = [n], the set
of goods M = [m], and a list of valuations (v1, v2, . . . , vn). In general, the goal is
to find an EFX allocation or to determine that none exists. The only method by
which an algorithm can discover information about the vi’s is through value queries,
where upon querying the valuation vi at the set S, the algorithm learns vi(S). Our
lower bound applies even for a version of the problem that we will show to be total
(Theorem 4.2), meaning that an EFX allocation is guaranteed to exist.

Consider the special case of the EFX Allocation problem where all valuations
are identical. We will show in section 4 that an EFX allocation is guaranteed to exist in
this setting. We can define the deterministic query complexity D[EFXid(n,m)] as the
minimum number of queries required to find an EFX allocation for a set of players N =
[n] and a set of goods M = [m], given a single valuation v where an EFX allocation
is known to exist. Formally, D[EFXid(n,m)] = minΓ maxv TEFX(N,M, v,Γ), where
TEFX(N,M, v,Γ) denotes the number of queries required by the algorithm Γ to find
an EFX allocation for players N with valuation v over goods M . Since this is a special
case of the general EFX Allocation problem, the deterministic query complexity
of the general EFX allocation problem is at least D[EFXid(n,m)].

We now state and prove our main result of section 3.2. We will use M = [2k+ 1]
for some integer k.

Theorem 3.1. The deterministic query complexity of the EFX Allocation
problem satisfies

D[EFXid(2, 2k + 1)] ≥ D[LS(K(2k + 1, k))],

even for two players with identical submodular valuations.

Proof. Let T = D[EFXid(2, 2k+ 1)]; then there exists an algorithm Γ for finding
an EFX allocation which uses at most T queries, regardless of v. We will construct
an algorithm Γ′ for Local Search which also uses at most T queries, regardless
of f . Formally, maxv TEFX({1, 2},M, v,Γ) = T , and we will construct Γ′ such that
maxf TLS(K(2k + 1, k), f,Γ′) ≤ T .

Define the algorithm Γ′ on input (K(2k+1, k), f) as follows. For each S ⊆ [2k+1],
define v(S) as

v(S) =


2|S| if |S| < k,

2k − 1

1 + e(f(S))
if |S| = k,

2k if |S| > k.
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Then run Γ on ({1, 2}, [2k + 1], v) to obtain an EFX allocation (A1, A2), and return
A1 if |A1| < |A2| and A2 otherwise. We will show that the returned set corresponds
to a local maximum in K(2k + 1, k) (see Figure 2).

{1, 3}

{2, 4}

{3, 5}{4, 1}

{5, 2}

{4, 5}

{5, 1}

{1, 2}{2, 3}

{3, 4}

Fig. 2. The graph shown is K(2k + 1, k) for k = 2, also known as the Petersen graph. Each
vertex corresponds to a size 2 subset of [5]. Suppose the allocation where A1 = {1, 2, 3} and A2 =
{4, 5} is EFX. Since v(S1) ≥ v(S2) if and only if f(S1) ≥ f(S2), we have f({4, 5}) ≥ f({1, 2}),
f({4, 5}) ≥ f({2, 3}), and f({4, 5}) ≥ f({1, 3}). Therefore {4,5} is a local maximum in this graph.

For brevity, define

δ(S) = − 1

1 + ef(S)
.

We note that −1 < δ(S) < 0 for all S and that δ(S) is strictly increasing with f(S).
Any other function satisfying these properties would work as well.

We first argue that any EFX allocation returned by Γ must give one player exactly
k goods. Suppose that this is not the case. Then one player must receive fewer than
k goods; without loss of generality, assume |A2| < k, and thus |A1| > k+1. Therefore
v(A2) ≤ 2k − 2 and v(A1) = 2k.

For an arbitrary g ∈ A1, we have |A1\{g}| > k. Therefore there exists a g ∈ A1

such that v(A1\{g}) = 2k > v(A2), so the allocation cannot be EFX. Thus any EFX
allocation must give one player exactly k goods. Therefore Γ will return a set of size
k, which corresponds to a valid vertex of K(2k + 1, k).

Without loss of generality, assume |A1| = k + 1 and |A2| = k. Then v(A1) = 2k
and v(A2) = 2k + δ(A2) < 2k, so v(A1) > v(A2). Therefore the allocation A =
(A1, A2) is EFX if and only if v(A2) ≥ v(A1\{g}) for all g ∈ A1.

We can rewrite this condition as v(A2) ≥ v(S) for all S ⊆ A1 where |S| = k. For
any |S| = k, we have v(A2)− v(S) = δ(A2)− δ(S). Since δ is strictly increasing with
f(S), we have v(A2) ≥ v(S) if and only if f(A2) ≥ f(S). Therefore an allocation
(A1, A2) is EFX if and only if f(A2) ≥ f(S) for all S ⊆ A1 where |S| = k.

Observe that S ⊆ A1 if and only if S ∩A2 = ∅. Therefore an allocation (A1, A2)
is EFX if and only if f(A2) ≥ f(S) for all S ⊆M where |S| = k and S∩A2 = ∅. This
is exactly the definition of A2 being a local maximum in K(2k + 1, k). Therefore an
allocation (A1, A2) is EFX if and only if A2 is a local maximum in K(2k + 1, k).
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1048 BENJAMIN PLAUT AND TIM ROUGHGARDEN

Thus Γ′ correctly solves Local Search. Furthermore, since Γ′ uses no queries
outside of running Γ, and Γ uses at most T queries, Γ′ also uses at most T queries.
Therefore

D[EFXid(2, 2k + 1)] ≥ D[LS(K(2k + 1, k))].

It remains to show that v is submodular. For any S ⊆M and x ∈M\S, we have

v(S ∪ {x})− v(S) =


2 if |S ∪ {x}| < k,

2 + δ(S ∪ {x}) if |S ∪ {x}| = k,

−δ(S) if |S ∪ {x}| = k + 1,

0 if |S ∪ {x}| > k + 1.

Therefore v(S ∪ {x}) − v(S) is nonincreasing with |S|, since −1 < δ(S) < 0 for
all S. Thus v(X ∪ {x})− v(X) ≥ v(Y ∪ {x})− v(Y ) whenever |X| < |Y |. If X ⊆ Y ,
either |X| < |Y | or X = Y . When X = Y , we trivially have v(X ∪ {x}) − v(X) =
v(Y ∪ {x})− v(Y ). Thus we have v(X ∪ {x})− v(X) ≥ v(Y ∪ {x})− v(Y ) whenever
X ⊆ Y , and so v is submodular.

3.3. Query complexity of local search on odd graphs. In this section, we
show that finding a local maximum on K(2k+1, k) has exponential query complexity,
completing our lower bound on the number of queries required to find an EFX allo-
cation. We first give a weaker bound which follows immediately from general local
search lower bounds, and then prove a stronger lower bound for the specific case of
K(2k + 1, k).11

3.3.1. A weaker lower bound. Dinh and Russell [16] proved a general lower
bound for local search for all vertex transitive graphs, which thus applies to K(2k +
1, k). Furthermore, their lower bound holds even for randomized algorithms: let
R[LS(G)] be the minimum number of queries required to solve Local Search on
G by a randomized algorithm: the algorithm should output a local maximum with
probability at least 2/3 (say) over its internal coin flips. Formally, R[LS(G)] =
minΓR

maxf T (G, f,ΓR), where ΓR ranges over the set of randomized algorithms. We
trivially have D[LS(G)] ≥ R[LS(G)].

Similarly, let R[EFXid(2, 2k + 1)] be the minimum number of queries required
by a randomized algorithm to find an EFX allocation for two players with identical
valuations and 2k + 1 goods (again with correctness probability at least 2/3, say);
again we have D[EFXid(2, 2k + 1)] ≥ R[EFXid(2, 2k + 1)].

Theorem 3.2 (see [16]). If G = (V,E) is a vertex transitive graph with diameter
d, then

R[LS(G)] ∈ Ω

( √
|V |

d · log |V |

)
.

Since K(2k+ 1, k) is vertex transitive, the last piece of the puzzle is the following
theorem.

Theorem 3.3 (see [35]). The diameter of K(2k + 1, k) is k.

With these two tools in hand, Theorem 3.4 requires only a short proof.

11A similar lower bound for local search on K(2k + 1, k) was proved (using different arguments)
in [17].
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Theorem 3.4. The randomized query complexity of the EFX Allocation prob-
lem satisfies

R[EFXid(2, 2k + 1)] ∈ Ω

(√(
2k + 1

k

)
1

k2

)
,

even for two players with identical submodular valuations.

Proof. Since |V | = ( 2k+1
k

) and log(( 2k+1
k

) ∈ O(log(4k)) = O(k), we have

R[LS(K(2k + 1, k))] ∈ Ω

(√(
2k + 1

k

)
1

dk

)

by Theorem 3.2. Thus by Theorem 3.3, we have

R[LS(K(2k + 1, k))] ∈ Ω

(√(
2k + 1

k

)
1

k2

)
.

The reduction used to prove that D[EFXid(2, 2k + 1)] ≥ D[LS(K(2k + 1, k))]
can equivalently be used to show that

R[EFXid(2, 2k + 1)] ≥ R[LS(K(2k + 1, k))].

Therefore R[EFXid(2, 2k + 1)] ∈ Ω
(√

( 2k+1
k

) 1
k2

)
.

While this bound is not as strong as our deterministic lower bound (Theorem 3.10),
it does establish that even a randomized algorithm requires an exponential number
of queries to find an EFX allocation.

3.3.2. A stronger lower bound. We now move on to our stronger lower bound
for the specific case of K(2k + 1, k). The first concept we need is that of boundaries.
For a graph G = (V,E) and a set S ⊆ V , define the boundary B(S) of S as the set of
vertices that are not in S but are adjacent to a vertex in S. Formally, B(S) = {a ∈
V \S : ∃b ∈ S, (a, b) ∈ E}. The next result, due to [24], implies that local search is
hard in graphs that only have large boundaries.

Lemma 3.5 (see [24]). For any graph G = (V,E) and integers t and c,

D[LS(G)] ≥ min
(
t,min

S
{|B(S)| : c− t ≤ |S| ≤ c}

)
.

Proof sketch. We sketch a proof for the benefit of the reader. The proof follows an
adversary argument. Let Gu be the subgraph induced by the still-unqueried vertices.
While Gu remains connected, suppose the adversary simply returns increasing values
for each query. Then the only way for a local maximum to be created is to query a
vertex a after querying all of a’s neighbors.

Furthermore, while Gu remains connected and contains at least one unqueried
vertex, the most recently queried vertex a must have an unqueried neighbor b: if not,
Gu must have been disconnected prior to the most recent query. The adversary is
free to toggle which of a and b is a local maximum (or possibly neither, if there are
more unqueried vertices). Thus while at least one vertex has not been queried and
the graph of unqueried vertices remains connected, it cannot be determined where
the graph has a local maximum.
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3 2

1 5 3 2

1 5 4 3 2

Fig. 3. An example of the separation game played on a path. After two central vertices are
queried, returning values 3 and 2 as shown, we know that there must be a local maximum in the left
half. Next, we bisect the left half by querying two more vertices, which return values 1 and 5. At
this point, we know that either the vertex with value 5 or the vertex immediately to its right must be
a local maximum, and only one more query is required to determine which. In this case, the local
maximum is the vertex with value 5.

Thus the only strategy to counteract the adversary is to perform a sort of binary
search. First, we must disconnect the graph of unqueried vertices. At least one of
the resulting components must contain a local maximum, and Llewellyn, Tovey, and
Trick [24] show how we can always identify one such component based on the query
results so far. Thus we can recurse on that component, and the process repeats.
Llewellyn, Tovey, and Trick [24] call this the separation game. An example of the
separation game being played on a path is given by Figure 3.

By this logic, we will have to eventually disconnect a “fairly large” component:
if it is too small, the adversary is free to place the local maximum in another larger
component. Specifically, Llewellyn, Tovey, and Trick [24] show that for any integers
t and c, the adversary can force us to either query t vertices or disconnect a set of
vertices S where c− t ≤ |S| ≤ c.

In order to disconnect a set of vertices S, every vertex on the boundary of S must
be queried. Thus at least min

(
t,minS{|B(S)| : c− t ≤ |S| ≤ c}

)
must be queried, as

claimed.

3.3.3. Boundaries of Kneser graphs. In light of Lemma 3.5 and our interest
in Kneser graphs, the natural next step is to understand boundary sizes in Kneser
graphs. We will make use of the following variant of the Erdős–Ko–Rado theorem.
Call the set families X and Y cross-intersecting if X∩Y 6= ∅ for all X ∈ X and Y ∈ Y.

Lemma 3.6 (see [25]). If X and Y are cross-intersecting families of size-k subsets
of [n], then

|X ||Y| ≤
(
n− 1

k − 1

)2

.

Note that the inequality in Lemma 3.6 holds with equality (for k ≤ n/2) when X
and Y both consist of all subsets of size k that contain the element 1.

The next lemma is due to Zheng [36]. We include a proof for completeness.

Lemma 3.7 (see [36]). Let µG(r) denote min|S|=r |B(S)|. Then for all 1 ≤ r ≤
( n
k ),

µK(n,k)(r) ≥
(
n

k

)
− 1

r

(
n− 1

k − 1

)2

− r.

Proof. For any S, we can partition V into S, B(S), and V \(S ∪ B(S)). An
example of this is shown in Figure 4. Consider an arbitrary a ∈ V \(S ∪ B(S)). We
know that a 6∈ S and a 6∈ B(S), so there is no b ∈ S where (a, b) ∈ E. Therefore
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Fig. 4. The partitioning of an arbitrary graph into S, B(S), and V \(S∪B(S)). In this example,
S is the set of white vertices, B(S) is the set of black vertices, and V \(S∪B(S)) is the set of partially
shaded vertices.

for all a ∈ V \(S ∪ B(S)) and b ∈ S, a and b are not adjacent. Recall that a and b
are adjacent in K(n, k) if a ∩ b = ∅. Therefore for all a ∈ V \(S ∪ B(S)) and b ∈ S,
a ∩ b 6= ∅. Thus S and V \(S ∪B(S)) are cross-intersecting families.

Therefore by Lemma 3.6, we have |S||V \(S∪B(S))| ≤ ( n−1
k−12 ). Let r = |S|. Then

|V \(S ∪B(S))| ≤ 1
r ( n−1

k−12 ). Therefore for all S,

|B(S)| = |V | − |V \(S ∪B(S))| − |S|

=
(
n

k

)
− |V \(S ∪B(S))| − r

≥
(
n

k

)
− 1

r

(
n− 1

k − 1

)2

− r

and so µK(n,k)(r) = min|S|=r |B(S)| ≥ ( n
k )− 1

r ( n−1
k−1 )2 − r.

We will only be interested in K(2k + 1, k), so we will simply write

µ(r) = µK(2k+1,k)(r).

Similarly, let

β(r) =
(

2k + 1

k

)
− 1

r

(
2k

k − 1

)2

− r.

Then µ(r) ≥ β(r) for all r.
We next prove a lemma building on Lemma 3.7.

Lemma 3.8. Let rmax = ( 2k
k−1 ). Then for the graph K(2k + 1, k) and any r∗ ≤

rmax,

min
S
{|B(S)| : r∗ ≤ |S| ≤ rmax} ≥ β(r∗).

Proof. We begin by examining the expression β(r)− β(r − 1):

β(r)− β(r − 1) = − 1

r

(
2k

k − 1

)2

− r +
1

r − 1

(
2k

k − 1

)2

+ r − 1

=
(

1

r − 1
− 1

r

)(
2k

k − 1

)2

− 1

=
1

r(r − 1)

(
2k

k − 1

)2

− 1.

Therefore β(r)− β(r − 1) ≥ 0 when r(r − 1) ≤ ( 2k
k−1 )2. If r ≤ rmax, then r(r − 1) <

r2 ≤ r2
max = ( 2k

k−1 )2. Thus β(r) ≥ β(r − 1) when r ≤ rmax. Iterating this inequality
yields β(r∗) ≤ β(r) whenever r∗ ≤ r ≤ rmax.
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We can rewrite minS{|B(S)| : r∗ ≤ |S| ≤ rmax} as

min
S
{|B(S)| : r∗ ≤ |S| ≤ rmax} = min

r: r∗≤r≤rmax

min
|S|=r

|B(S)|

= min
r: r∗≤r≤rmax

µ(r)

≥ min
r: r∗≤r≤rmax

β(r),

where the last step is due to Lemma 3.7. Since β(r∗) ≤ β(r) whenever r∗ ≤ r ≤ rmax,
we have minr: r∗≤r≤rmax

β(r) = β(r∗). Therefore minS{|B(S)| : r∗ ≤ |S| ≤ rmax} ≥
β(r∗), as required.

3.3.4. Local search on K(2k + 1, k). We are now ready to prove our result
on D[LS(K(2k + 1, k))].

Theorem 3.9. For all k,

D[LS(K(2k + 1, k))] ∈ Ω

(
1

k

(
2k + 1

k

))
.

Proof. Let c = rmax = ( 2k
k−1 ), and let t = 1

2k rmax, so c − t = 2k−1
2k rmax. Note

that c is divisible by 2k, so t is indeed an integer. Then by Lemma 3.5,

D[LS(K(2k + 1, k))] ≥ min
(

1

2k
rmax,min

S

{
|B(S)| : 2k − 1

2k
rmax ≤ |S| ≤ rmax

})
.

By Lemma 3.8,

min
S

{
|B(S)| : 2k − 1

2k
rmax ≤ |S| ≤ rmax

}
≥ β

(
2k − 1

2k
rmax

)
=
(

2k + 1

k

)
− 2k

(2k − 1) · rmax
r2
max−

2k − 1

2k
rmax

≥
(

2k + 1

k

)
−
(

2k

2k − 1
+ 1
)
rmax.

Using the identity ( n
k ) = n

k ( n−1
k−1 ) for any n, k, we have ( 2k+1

k
) = 2k+1

k ( 2k
k−1 ) =

2k+1
k rmax. Thus we have

min
S

{
|B(S)| : 2k − 1

2k
rmax ≤ |S| ≤ rmax

}
≥
(

2k + 1

k
− 2k

2k − 1
− 1
)
rmax

=
(2k + 1)(2k − 1)− 2k2 − k(2k − 1)

k(2k − 1)
rmax

=
4k2 − 1− 2k2 − 2k2 + k

k(2k − 1)
rmax

=
k − 1

k(2k − 1)
rmax.

Therefore,

D[LS(K(2k + 1, k))] ≥ min
(

1

2k
rmax,

k − 1

k(2k − 1)
rmax

)
∈ Ω

(
1

k
rmax

)
.

Since ( 2k+1
k

) = 2k+1
k rmax ∈ Θ(rmax), we have

D[LS(K(2k + 1, k))] ∈ Ω
(

1

k

(
2k + 1

k

))
.
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Theorems 3.1 and 3.9 together imply our main result of section 3.

Theorem 3.10. The deterministic query complexity of the EFX Allocation
problem satisfies

D[EFXid(2, 2k + 1)] ∈ Ω

(
1

k

(
2k + 1

k

))
,

even for two players with identical submodular valuations.

4. Existence of EFX allocations for general but identical valuations.
We mentioned in the previous section that an EFX allocation is guaranteed to exist
when all players have the same valuation: this section proves that claim. Specifically,
we show that a modified version of the leximin solution is guaranteed to be EFX for
general but identical valutions. This also yields a cut-and-choose-based protocol for
two players with general and possibly distinct valuations.

4.1. The leximin solution. The leximin solution selects the allocation which
maximizes the minimum utility of any player. If there are multiple allocations which
achieve that minimum utility, it chooses among those the one which maximizes the
second minimum utility, and so on. This implicitly specifies a comparison operator
≺, which is given by Algorithm 4.1, and constitutes a total ordering over allocations.

The operator ≺ takes as input two allocations A and B and the list of player
valuations (v1, . . . , vn). The players are ordered by utility and according to some
arbitrary but consistent tiebreak for players with the same utility (for example, by
player index). The comparison terminates when the `th player in A’s ordering XA

has different utility from the `th player in B’s ordering XB .
The leximin solution is the global maximum under this ordering. The leximin

solution is trivially PO, since if it were possible to improve the utility of one player
without decreasing the utility of any other player, the new allocation would be strictly
larger under ≺.

4.1.1. Standard leximin is not EFX. Unfortunately, the standard leximin
solution is not always EFX, even for identical valuations. Consider two players with
the same (nonadditive) valuation v over two goods a and b. Define v by

v(S) =


0 if S = {a},
1 if S = {b},
2 if S = {a, b}.

By symmetry, suppose without loss of generality that player 1 receives good b.
Define the allocation A by A1 = {b} and A2 = {a}, and define the allocation B by
B1 = {a, b} and B2 = ∅.

Since player 2 (the minimum utility player) is indifferent between A and B, lex-
imin selects allocation B because it maximizes the value of player 1 (the second
minimum utility player). However, A is EFX, while B is not: player 2 envies player
1 even after the removal of a from B1.12

4.2. The leximin++ solution. Our fix is that after maximizing the minimum
utility, we maximize the size of the bundle of the player with minimum utility, before
maximizing the second minimum utility. Then we maximize the second minimum

12This example will be relevant again in section 5 as an instance where there is no allocation
which is both EFX and PO.
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1054 BENJAMIN PLAUT AND TIM ROUGHGARDEN

Algorithm 4.1 Leximin and Leximin++ comparison operators

1: function LeximinCmp(A,B, (v1, . . . , vn)) . Returns true if A ≺ B (strictly)
2: XA ← ordering of players by increasing utility vi(Ai), then by some arbitrary

but consistent tiebreak method for players with the same utility
3: XB ← corresponding ordering of players under B
4: for each ` ∈ [n] do
5: i← XA

` . `th player in the ordering XA

6: j ← XB
` . `th player in the ordering XB

7: if vi(Ai) 6= vj(Bj) then
8: return vi(Ai) < vj(Bj)

9: return false . In this case, A and B are equal

function Leximin++Cmp(A,B, (v1, . . . , vn)) . Returns true if A ≺++ B
(strictly)

2: XA ← same as in LeximinCmp
XB ← same as in LeximinCmp

4: for each ` ∈ [n] do
i← XA

`

6: j ← XB
`

if vi(Ai) 6= vj(Bj) then
8: return vi(Ai) < vj(Bj)

if |Ai| 6= |Bj | then
10: return |Ai| < |Bj |

return false

utility, followed by the size of the second minimum utility bundle, and so on. Thus
giving good a to the lower utility player (player 2) is preferable, and so the EFX
allocation A is chosen over B.

We call this the leximin++ solution. The leximin++ solution induces a compari-
son operator ≺++, also given in Algorithm 4.1. Similarly to ≺, the players are ordered
by increasing utility, and then according to an arbitrary but consistent tiebreak among
players with the same utility.13 The comparison terminates when the `th player in
XA differs in utility or bundle size from the `th player in XB , with utility being
checked before bundle size.

It may not be immediately clear that ≺++ specifies a total ordering, but this is in
fact the case. The proof of Theorem 4.1 is a digression and is deferred to Appendix B.

Theorem 4.1. The comparison operator ≺++ specifies a total ordering.

We are now ready to prove our main result of this section.

Theorem 4.2. For general but identical valuations, the leximin++ solution is
EFX.

13The tiebreak method must be consistent to ensure that ≺++ is a total ordering. Consider two
players with the same valuation v, and a single good a where v({a}) = 0. Suppose a ∈ A1. Since
both players have zero utility, if the tiebreak method were not required to be consistent, both {1, 2}
and {2, 1} would be valid player orderings for A. Consider running A ≺++ A. If player 2 were
considered first in the A on the left, and player 1 were considered first in the A on the right, the
operator would see that player 1 has a larger bundle than player 2 and return true.
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Proof. Let A be an allocation that is not EFX. We will show that A is not the
leximin++ solution.

Since A is not EFX, there exist players i, j and g ∈ Aj where v(Ai) < v(Aj\{g}).
Then any player with utility mink v(Ak) must also have utility strictly less than
v(Aj\{g}), so assume without loss of generality that i = arg mink v(Ak). If there
are multiple players with minimum utility in A, let i be the one considered last in the
ordering XA, according to the tiebreak method.

Define a new allocation B where Bi = Ai ∪ {g}, Bj = Aj\{g}, and Bk = Ak for
all k 6∈ {i, j}. We will show that A ≺++ B.

Let S be the set of players appearing before i in XA. We know i is considered
last among the players with minimum utility by assumption, so S is exactly the set
of players with minimum utility, other than i. Note that neither i nor j is in S.

Since the only bundles that differ between allocations A and B are that of i and
j, we have Ak = Bk for all k ∈ S. Thus for all k ∈ S, v(Bk) = v(Ak) = v(Ai). Since
v(Bj) > v(Ai), j must occur after every player in S in XB .

Because Ai ⊂ Bi, we have v(Bi) ≥ v(Ai). If v(Bi) > v(Ai), i must occur after
every player in S in XB , since v(Bi) > v(Bk) for all k ∈ S. If v(Bi) = v(Ai), i is still
considered after every player in S according to the tiebreak method. Thus i occurs
after every player in S in XB in either case, which shows that the first |S| players in
XB are the players in S, in the same order they occur in XA.

Therefore the leximin++ comparison will not have terminated before reaching
position |S| + 1 in the orderings. Let T be the set of players appearing after i in
XA: note that j ∈ T . By assumption, of the players with minimum utility in A, i
appears last in XA. Therefore all players after i in XA do not have minimum utility,
so v(Ak) > v(Ai) for all k ∈ T . Recall that v(Bj) > v(Ai) and that for all k ∈ T\{j},
v(Bk) = v(Ak). Thus v(Bk) > v(Ai) for all k ∈ T .

We know that XA
|S|+1 = i. If XB

|S|+1 = i, we have |Ai| < |Bi| (and possibly also

v(Ai) < v(Bi)), so A ≺++ B returns true. If XB
|S|+1 = k for some k 6= i, then k ∈ T .

Therefore v(Ai) < v(Bk), so A ≺++ B returns true in this case as well.
Since A ≺++ B, A cannot be the leximin++ solution. Therefore the leximin++

solution must be EFX.

We now show how Theorem 4.2 can easily be used to find an EFX allocation for
two players with general and possibly distinct valuations.14 Our algorithm for this
follows from the observation that any player can partition the goods into k bundles
that are mutually EFX from her viewpoint, simply by computing the leximin++
solution with k copies of herself.

Algorithm 4.2 is a straightforward adaptation of the cut-and-choose protocol.
Player 1 partitions the goods into two bundles using the leximin++ solution, and
player 2 chooses her favorite bundle.

Theorem 4.3. For two players with general (not necessarily identical) valuations,
Algorithm 4.2 returns an EFX allocation.

Proof. By Theorem 4.2, the allocation is EFX from player 1’s viewpoint regardless
of which bundle she receives. Player 2 receives her favorite bundle, so the resulting
allocation is EFX from her viewpoint as well.

14The two-player case is not trivial. For example, our lower bound in Theorem 3.10 already applies
with two players (even with identical valuations).
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Algorithm 4.2 Find an EFX allocation for two players with general valuations via
cut-and-choose

1: function CutAndChoose(m, v1, v2)
2: (A1, A2)← Leximin++Solution(2,m, v1) . Player 1 uses the leximin++

solution to cut,
3: if v2(A1) ≥ v2(A2) then . and player 2 chooses.
4: return (A2, A1)
5: else
6: return (A1, A2)

4.3. Limitations of leximin++. Unfortunately, the leximin++ solution may
not be EFX when players have different valuations. For example, consider two players
with valuations v1(S) = |S| and v2(S) = ε|S|, for some small ε > 0. As long as player
1 receives at least one good, she will have utility at least 1. However, player 2 will
always have utility less than 1 for a suitably small ε. Thus the leximin++ solution
gives a single good to player 1 and the rest to player 2, which will cause player 1 to
envy player 2 in violation of EFX.

One might hope that this could be remedied by assuming that all players have the
same value for the entire set of goods (or rescaling valuations as necessary if this is
not the case). Unfortunately, the set of additive valuations given by Figure 5 thwarts
this hope.

a b c d
player 1 14 3 2 1
player 2 7 6 4 3
player 3 20 0 0 0

Fig. 5. An example where the leximin++ solution fails to be EFX even when all players have
the same value for the entire set of goods.

We claim that the allocation A = ({b, d}, {c}, {a}) is the only allocation where
all players have utility at least 4. To see this, first observe that good a must go to
player 3, or player 3 has zero utility. Then the only way to give players 1 and 2 each
utility at least 4 is to give {b, d} to player 1 and {c} to player 2.

Since A is the only allocation which gives all players utility at least 4, A must be
the leximin++ solution. However, A is not EFX, because v2({c}) < v2({b, d}\{d}).

We mentioned at the beginning of this section that the leximin solution is trivially
PO. The leximin++ solution does not share this guarantee. Indeed, this is necessary
in order for the leximin++ solution to be EFX, since it is impossible to simultaneously
guarantee EFX and Pareto optimality, even for identical valuations (Theorem 5.2).
However, that example relies on zero value goods. We will show in the next section
that if zero value goods are disallowed, the leximin solution becomes EFX as well as
PO in two contexts.

5. Pareto optimality. In this section, we examine when EFX and Pareto op-
timality can be guaranteed simultaneously. We begin by showing that if a player is
wholly indifferent to a good being added to her bundle (zero marginal utility), EFX
and Pareto optimality can be mutually exclusive even in simple cases.

Theorem 5.1. If zero marginal utility is allowed, there exist additive valuations
where no EFX allocation is also PO, even for two players.
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Proof. Consider the following additive valuations:

a b c
player 1 2 1 0
player 2 2 0 1

Since v1({c}) = 0 but v2({c}) > 0, c ∈ A2 in any PO allocation. Similarly, b ∈ A1

in any PO allocation.
By symmetry, assume without loss of generality that a ∈ A1, so A1 = {a, b} and

A2 = {c}. Then v2({c}) = 1, but v2(A1\{b}) = v2({a}) = 2, so the allocation is not
EFX.

Therefore no allocation is both EFX and PO.

A similar example exists for general and identical valuations. This example was
also used in section 4 to show that the leximin solution may not be EFX when zero
marginal utility is allowed.

Theorem 5.2. If zero marginal utility is allowed, there exist general and identical
valuations where no EFX allocation is also PO, even for two players.

Proof. Consider two players with the same valuation v, and two goods a and b.
Define v by

v(S) =


0 if S = {a},
1 if S = {b},
2 if S = {a, b}.

By symmetry, assume without loss of generality that b ∈ A1. If A1 = {a, b}, then
v(A2) = v(∅) = 0, but v(A1\{a}) = v({b}) > 0, so the allocation is not EFX.

Therefore in any EFX allocation, a ∈ A2. But v({a}) = v(∅) = 0 and v({a, b}) >
v({b}). Thus giving a to player 1 strictly increases player 1’s value, without changing
player 2’s value, so the allocation is not PO.

Therefore no allocation is both EFX and PO.

On the other hand, if valuations are required to be additive and identical, it is
possible to guarantee EFX and Pareto optimality simultaneously, even with zero mar-
ginal utility. However, this is an extremely restrictive setting that we mention mostly
for completeness; we consider this a very minor result. The proof of Theorem 5.3
appears in Appendix B.

Theorem 5.3. For additive and identical valuations, there exists an allocation
that is both EFX and PO (even allowing zero marginal utility).

5.1. Nonzero marginal utility. The negative results of Theorems 5.1 and 5.2
both break down if players are assumed to have strictly positive utility for any good
being added to their bundle. Formally, we say that a valuation v has nonzero marginal
utility if for every set S ⊂ [m] and g 6∈ S, v(S ∪ {g})− v(S) > 0.

We feel that this is a reasonable assumption in practice, as v(S ∪ {g}) − v(S) is
allowed to be arbitrarily small, and one might expect players in real-world situations
to always prefer to have a good than not.

5.1.1. Positive results from leximin. Under the assumption of nonzero mar-
ginal utility, the leximin solution is guaranteed to be both EFX and PO for any num-
ber of players with general but identical valuations and for two players with (possibly
distinct) additive valuations.

Theorem 5.4. For general but identical valuations with nonzero marginal utility,
the leximin solution is EFX and PO.
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Proof. We follow a very similar analysis to the proof of Theorem 4.2. Let A
be an allocation that is not EFX. Then there exist players i, j and g ∈ Aj where
v(Ai) < v(Aj\{g}). Again assume without loss of generality that i = arg mink v(Ak),
and if there are multiple players with minimum utility in A, let i be the one considered
last in the ordering XA.

Define the same new allocation B where Bi = Ai ∪ {g}, Bj = Aj\{g}, and
Bk = Ak for all k 6∈ {i, j}. When zero marginal utility is allowed, the leximin++
modification of considering bundle size is necessary because otherwise if vi(Bi) =
vi(Ai), it could be the case that B ≺ A. When zero marginal utility is disallowed,
this modification is not necessary because vi(Bi) > vi(Ai) always.

The proof of Theorem 4.2 can be used nearly verbatim to show that A ≺ B
(simply omit the sentences handling the case where v(Bi) = v(Ai), since we now have
v(Bi) > v(Ai), due to the nonzero marginal utility of v). Thus A is not the leximin
solution, so the leximin solution is EFX.

As noted before, the leximin solution is trivially PO, since if any player could
be made better off without hurting any other player, that new allocation would be
strictly larger under ≺.

We now show that assuming nonzero marginal utility, the leximin solution is
EFX and PO for two players with additive valuations. For this theorem, we will
assume that vi([m]) = 1 for all i: were this not the case, we could easily define
v′i(S) = vi(S)/vi([m]) and find the leximin solution according to v′. Additivity is
necessary for Theorem 5.5 so that vi(A1) < vi(A2) implies vi(A1) < 1/2 and so that
vi(A1) ≥ vi(A2) implies vi(A1) ≥ 1/2.

The proof is similar to those of Theorems 4.2 and 5.4, in that we consider an
arbitrary allocation A that is not EFX and show that it cannot be the leximin solution
by constructing an allocation B such that A ≺ B. However, the allocation B is
constructed differently here.

Theorem 5.5. For two players with additive valuations (not necessarily identical)
with nonzero marginal utility, the leximin solution is EFX and PO.

Proof. Let A be an allocation that is not EFX. Then there exist players i, j and
g ∈ Aj where vi(Ai) < vi(Aj\{g}). Without loss of generality, assume i = 1 and
j = 2.

We know that v1(A1) < v1(A2), so v1(A1) < 1/2. If v2(A2) < v2(A1), the players
could swap bundles to increase both of their utilities, so A could not be the leximin
solution. Therefore assume v2(A2) ≥ v2(A1), and so v2(A2) ≥ 1/2.

Define two new bundles S1 = A1 ∪ {g} and S2 = A2\{g}. Then define a new
allocation B where B1 = arg minS∈{S1,S2} v2(S) and B2 = arg maxS∈{S1,S2} v2(S).

Since player 2 received her favorite of S1 and S2, we still have v2(B2) ≥ 1/2. We
have v1(S2) = v1(A2\{g}) > v1(A1) by our original assumption that A is not EFX,
and we have v1(S1) = v1(A1 ∪ {g}) > v1(A1) by the nonzero marginal utility of v1.
Therefore regardless of which bundle player 1 receives, v1(B1) > v1(A1).

Thus B has a higher minimum utility than A, so A cannot be the leximin solution.
Therefore the leximin solution is EFX in this setting, and it remains trivially PO.

Assuming nonzero marginal utility, Theorem 5.5 provides stronger guarantees
than the currently deployed algorithm on Spliddit, which only guarantees an EF1 and
PO allocation. As described in section 1.3.4, this manifests even in simple cases.

We also argue that the assumption of nonzero marginal utility is particularly
reasonable in the case of two players with additive valuations, since if a player is truly
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indifferent to some good, perhaps that good could simply be given to the other player
and excluded from the fair division process entirely.

5.1.2. Counterexample for two players with general valuations. Finally,
we show that EFX and Pareto optimality cannot be guaranteed simultaneously for
general and distinct valuations, even with the assumption of nonzero marginal utility.

Theorem 5.6. There exist general valuations where no EFX allocation is also
PO, even for two players with nonzero marginal utility.

Proof. We construct a set of valuations for which there is no EFX allocation that
is also PO.

Let n = 2 and M = {a, b, c, d, e}. Let α1 = {a}, β1 = {b, d}, γ1 = {a, c, d} and
α2 = {b}, β2 = {a, d}, γ2 = {b, d, e}. The key properties will be α1 ⊂ β2 ⊂ γ1 and
α2 ⊂ β1 ⊂ γ2.

Define each player’s valuation vi by

vi(S) =


3 + ε(|S| − 3) if γi ⊆ S,
2 + ε(|S| − 2) if βi ⊆ S and γi 6⊆ S,
1 + ε(|S| − 1) if αi ⊆ S and βi, γi 6⊆ S,
ε|S| otherwise

for some small ε > 0 (.1 would suffice). Adding a good to a bundle always increases
the value of the bundle by at least ε, so vi satisfies nonzero marginal utility. Also, note
that the valuations are symmetric across players, since αi, βi, and γi are symmetric
across players.

We have the following implications:

γi 6⊆ S =⇒ vi(S) < 3,

βi, γi 6⊆ S =⇒ vi(S) < 2,

αi, βi, γi 6⊆ S =⇒ vi(S) < 1.

By Theorem 4.3, an EFX allocation A = (A1, A2) must exist. Suppose γi ⊆ Ai

for some i: by symmetry, suppose i = 1. Since β1 ∩ β2 ∩ γ1 ∩ γ2 = {d} 6= ∅, we have
β2, γ2 6⊆ A2, so v2(A2) < 2. Furthermore, β2 is a strict subset of A1: specifically,
β2 ⊆ A1\{c}. Therefore v2(A1\{c}) ≥ v2(β2) = 2, which is strictly larger than
v2(A2). Therefore if γi ⊆ Ai for either i, A is not EFX.

Now suppose βi ⊆ Ai for some i: again suppose i = 1. Similarly, β2, γ2 6⊆ A2.
In this case, we also have α2 6⊆ A2, since α2 ∩ β1 6= ∅. Therefore v2(A2) < 1. Since
α2 ⊆ A1\{d}, we have v2(A1\{d}) ≥ v2(α1) = 1, which is strictly larger than v2(A2).
Therefore if βi ⊆ Ai for either i, A is not EFX. Since A is EFX by assumption, we
have βi, γi 6⊆ Ai for both i, and so vi(Ai) < 2 for both i.

We next claim that αi ⊆ Ai for both i. Suppose α1 6⊆ A1: then α1 ⊆ A2.
Therefore v1(A1) < 1, and v1(A2) ≥ 1, so player 1 envies player 2. If there exists
g ∈ A2\α1, then g could be removed and player 1 would still envy player 2. Thus
if |A2| ≥ 2, A is not EFX, so we have |A2| = 1. But then α2 ⊆ A1 and |A1| ≥ 2,
so player 1 is envied in violation of EFX. Thus we have α1 ⊆ A1, and by symmetry,
α2 ⊆ A2.

One of the players has at least three goods; by symmetry, suppose |A1| ≥ 3. Since
α1 ⊆ A1 and β1, γ1, α2 6⊆ A1, we have A1 = {a, c, e} and A2 = {b, d}.

Consider the allocation B = (B1, B2) = ({a, c, d}, {b, e}). Player 2 is indifferent
between {b, d} and {b, e}, so v2(B2) = v2(A2). But γ1 ⊆ B1, so v1(B1) > v(A1).
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Thus player 1 is strictly better off in B, and no player is worse off. Therefore A is not
PO, and so no EFX allocation is PO.

One last attempt to salvage EFX and PO in this setting might be to require a strict
ranking over bundles, i.e., not allow player 2 to be indifferent between {b, d} and {b, e}.
However, even that would not work, because we can easily set v2({b, e}) > v2({b, d}),
in which case both players are strictly better off in B.

This counterexample and our query complexity lower bound show that EFX is
a very demanding fairness property, even for two players. In the next section, we
complement these negative results by showing that an approximate version of EFX is
satisfiable for any number of players with subadditive valuations.

6. Polynomial-time computation for a restricted setting. Finally, we de-
scribe a setting in which an EFX allocation always exists and can be computed in
polynomial time (counting both the value queries and all additional computation done
by an algorithm). Our result will hold when players have additive valuations with iden-
tical rankings, meaning that all players agree on the relative ordering of individual
goods. This is, for all players i and j, and for all goods g1 and g2, vi(g1) ≥ vi(g2)
whenever vj(g1) ≥ vj(g2). This will also yield a polynomial time algorithm for com-
puting an EFX allocation for two players with additive (possibly distinct) valuations.

Requiring identical rankings is not as strong as requiring identical valuations. For
example, let v1(g1) = 1, v1(g2) = 2, v1(g3) = 4 and v2(g1) = 2, v2(g2) = 3, v2(g3) = 4.
Then the rankings are identical, but v1({g1, g2}) < v1(g3), whereas v2({g1, g2}) >
v2(g3).

While strong, there are certainly real-world contexts where this assumption makes
sense. For example, if the goods are apartments (with differing square footage), airline
tickets (with differing numbers of stops and classes of service), or baseball pitchers
(with differing statistics), it is plausible that buyers generally agree on which goods
are more valuable than others but disagree on the exact values of these goods.

To describe our algorithm, we must first define the envy graph. The envy graph
of an allocation A has a vertex for each player and a directed edge from i to j if
player i envies player j. Here we mean full envy (i.e., vi(Ai) < vi(Aj)), not just envy
in violation of EFX. It will be necessary for the envy graph in our algorithm to be
acyclic; we now show that we can always ensure this. The following lemma is adapted
from Lipton et al. [23].

Lemma 6.1. Let A = (A1, A2, . . . , An) be an EFX allocation with envy graph
G = (V,E), where G contains a cycle. Then there exists another allocation B =
(B1, B2, . . . , Bn) with envy graph H where B is also EFX, and H has no cycles.

Proof. We first show that there exists another EFX allocation A′ = (A′1, . . . , A
′
n)

with envy graph G′, where G′ has strictly fewer edges than G.
Let c = (1, 2, . . . , |c|) be a cycle in G. Thus vi(Ai) < vi(A(i mod |c|)+1) for all i ∈ c.

Define a new allocation A′ where A′i = A(i mod |c|)+1 for all i, and let G′ = (V ′, E′)
be the envy graph for A′. It is clear that A′ is a permutation of A.

Suppose A′ is not EFX: then there exist i, j ∈ N and g ∈ A′j where vi(A
′) <

vi(A
′
j\{g}). Since A′ is a permutation of A, there exists k ∈ N where Ak = A′j , so

vi(A
′
i) < vi(Ak\{g}). Observe that vi(A

′
i) > vi(Ai) if i ∈ c, and vi(A

′
i) = vi(Ai)

otherwise. Thus vi(Ai) ≤ vi(A
′
i) < vi(Ak\{g}), and so A is also not EFX. Therefore

if A is EFX, then A′ is also EFX.
Note that the number of edges from V ′\c into c is unchanged. Also, the number

of edges from c into V ′\c has decreased or stayed the same, since the utility of every
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Algorithm 6.1 Find an EFX allocation for additive valuations with identical rankings

1: function GetEFXAllocationSameRanking(n,m, (v1, . . . , vn))
2: P ← Sorted([m]) . Sort in descending order: P1 = max(P )
3: for each i ∈ [n] do
4: Ai ← ∅
5: for each i ∈ [m] do
6: j ← FindUnenviedPlayer(A1, A2, . . . , An)
7: Aj ← Aj ∪ {Pi}
8: (A1, A2, . . . , An)← EliminateEnvyCycles(A1, A2, . . . , An)

9: return (A1, A2, . . . , An)

player in c has strictly increased. Furthermore, for each i ∈ c, the number of players
in c whom i envies has decreased by at least one. This shows that G′ has strictly
fewer edges than G.

If G′ still contains a cycle, we can apply this process again to obtain G′′, G′′′,
and so on. Since the number of edges strictly decreases each time, we can apply this
process at most |E| times before we obtain a envy graph without a cycle.

Algorithm 6.1 gives pseudocode for our algorithm. The function Eliminate
EnvyCycles repeatedly performs the process from Lemma 6.1 until the envy graph is
acyclic.

Theorem 6.2. For additive valuations with identical rankings, Algorithm 6.1 ter-
minates with an EFX allocation in O(mn3) time.

Proof. We first argue that at all times, vi(Aj) − vi(Ai) ≤ vi(g
∗) where g∗ is the

good most recently added to what is currently Aj . Since bundles may have been
permuted by EliminateEnvyCycles, j may not have been in possession of what is
currently Aj at the time g∗ was added. This does not affect the proof, however: it is
sufficient to interpret Aj as “the bundle that currently belongs to j.” Thus instead
of saying “i did not envy j at the time,” we will say “i did not envy Aj at the time.”

Observe that a good is allocated only to a player whom no one envies. Thus
directly before g∗ was added toAj , i did not envyAj : at that point vi(Aj)−vi(Ai) ≤ 0.
Therefore directly after g∗ was given to j, vi(Aj)− vi(Ai) ≤ vi(g∗). Since vi(Ai) can
only have grown since then, we have vi(Aj) − vi(Ai) ≤ vi(g

∗) until a new good is
added to Aj .

Since the goods are allocated in decreasing order of value, the good most recently
added to Aj must also be the least valuable good in Aj . Therefore at all times,
vi(Aj)−vi(Ai) ≤ ming∈Aj

vi(g), and so vi(Ai) ≥ vi(Aj)−ming∈Aj
vi(g). For additive

valuations, this is equivalent to vi(Ai) ≥ vi(Aj\{g}) for all g ∈ Aj . Therefore the
allocation at all times is EFX, so the final allocation is EFX.

Finally, we show that Algorithm 6.1 terminates in O(mn3) time. Each time a
good is allocated, any edges added to the envy graph must point to the recipient.
Thus at most n edges are added to the envy graph on each round, and so at most
mn edges are added to the graph over the course of the algorithm. Each time a cycle
is detected and bundles are permuted along that cycle using Lemma 6.1, at least one
edge is removed from the graph. Therefore this process is performed at most mn
times. Each time this process is performed, we may have to compute a large part of
the envy graph, which can take O(n2) time. Thus the overall running time bound is
O(mn3).
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1062 BENJAMIN PLAUT AND TIM ROUGHGARDEN

This algorithm is easily generalizable to general valuations under the condition
that all players agree on a single ordering of the marginal values of the goods. Specif-
ically, there must be an ordering of the goods (g1, g2, . . . , gm) where for any set S,
any player i, and all j, we have vi(S ∪ {gj}) ≥ vi(S ∪ {gj+1}). This ordering must
be fixed across all sets S. Then instead of allocating goods in descending order of
value, we allocate goods in descending order of marginal value, and the analogue of
Theorem 6.2 holds, with essentially the same proof.

Finally, we note that Algorithm 6.1 can be used to compute an EFX allocation
for two players with additive (possibly distinct) valuations in polynomial time. We
use a cut-and-choose argument similar to that of Theorem 4.3: player 1 runs Algo-
rithm 6.1 with two copies of herself to find an allocation which will be EFX from her
viewpoint, regardless of which bundle she receives. Then player 2 chooses her favorite
bundle in the resulting allocation, so the allocation will be fully envy-free from her
viewpoint.

7. Conclusion and future work. In this paper, we provided the first general
results on the fairness concept of envy-freeness up to any good. Our most technically
involved result was an exponential lower bound on the number of queries required
by any deterministic algorithm to find an EFX allocation, via a reduction from local
search. To complete the lower bound, we proved an exponential lower bound on the
number of queries required to find a local maximum on K(2k+ 1, k). We used results
from Dinh and Russell [16] and Valencia-Pabon and Vera [35] to obtain an exponential
lower bound for randomized algorithms as well. Our EFX lower bounds hold even for
two players with identical submodular valuations.

Next, we showed that for n players with general but identical valuations, a mod-
ification of the leximin solution is guaranteed to be EFX. We showed how this result
can be adapted into a cut-and-choose protocol for finding an EFX allocation between
two players with general and possibly distinct valuations.

We also considered satisfying EFX and Pareto optimality together. We showed
that if players are allowed to have zero value for a good being added to their bundle,
it is impossible to guarantee EFX and Pareto optimality simultaneously. However,
if we assume that a player’s value for her bundle is strictly increased by adding any
good (even just by some tiny ε), the leximin solution is EFX and PO two settings:
for n players with general but identical valuations, and for two players with possibly
distinct additive valuations. We view the latter result as our result of most practical
significance: assuming nonzero marginal utility, it provides stronger guarantees than
the currently deployed algorithm on Spliddit, even in simple examples. Last, we
gave an algorithm for finding a 1

2 -EFX allocation for any number of players with
subadditive valuations and a polynomial-time algorithm for finding an EFX allocation
for any number of players given additive valuations with identical rankings.

The ideal next step would be to consider EFX with distinct valuations and more
than two players. This problem seems quite challenging, even for the special case of
additive valuations. Indeed, Caragiannis et al. [11] were unable to settle the question
of whether EFX allocations in that context always exist, “despite significant effort.”
The problem seems highly nontrivial even for three players with different additive
valuations. We suspect that at least for general valuations, there exist instances
where no EFX allocation exists, and it may be easier to find a counterexample in that
setting. Similarly, finding a counterexample to EFX and Pareto optimality together
for additive valuations and more than two players (assuming nonzero marginal utility)
is another avenue that may be more tractable.
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Another direction is to pursue stronger lower bounds for finding an EFX alloca-
tion. In particular, communication complexity allows players unlimited computation
and queries and measures only the number of bits transmitted. The cut-and-choose
protocol from section 4 constitutes a linear communication protocol for two players
with general and possibly distinct valuations to compute an EFX allocation, so any
communication complexity lower bound would need to consider more than two play-
ers. On the other hand, we know finding an EFX allocation to be hard in the query
model even for two players, which suggests an interesting separation. Communication
complexity for discrete fair division was recently studied by [30], but they focused
primarily on full envy-freeness and proportionality, not relaxations like EFX.

More generally, communication complexity is one example of a topic that has
been studied in algorithmic mechanism design and may be useful in the study of fair
division. Another such topic is the hierarchy of complement-free valuations (additive,
submodular, subadditive, etc.). Our work already implies separations between these
valuation classes from a fair division perspective and suggests that fair division with
different classes of player valuations deserves further study.

Appendix A. Existence of 1
2
-EFX allocations for subadditive valuations.

The possible existence of EFX allocations for possibly distinct valuations and n ≥ 3
remains an open question, even for additive valuations. However, we are able to
achieve an approximate version of EFX, for any number of players with (possibly
distinct) subadditive valuations. In particular, we say that an allocation A is c-EFX
if for all i, j, and for all g ∈ Aj , vi(Ai) ≥ c · vi(Aj\{g}). In words, an allocation is
c-EFX if for all i, j, and g ∈ Aj , i’s value for her own bundle is at least c times her
value for j’s bundle after removing g. For example, 1-EFX is equivalent to standard
EFX. In this section, we give an algorithm that is guaranteed to return a 1

2 -EFX
allocation for any number of players with subadditive valuations.

Our algorithm (Algorithm A.1) is reminiscent of our algorithm for polynomial-
time computation with identical rankings. Initially all goods are in the pool P , and
we proceed in rounds until P is empty, maintaining the invariant that the partial
allocation at the end of each round is EFX. The function EliminateEnvyCycles uses
Lemma 6.1 to ensure that the graph at the beginning of each round is acyclic. Note
that we proved Lemma 6.1 only for EFX and not for c-EFX, but the following version
holds with essentially an identical proof.

Lemma A.1. Let A = (A1, A2, . . . , An) be a c-EFX allocation with envy graph
G = (V,E), where G contains a cycle. Then there exists another allocation B =
(B1, B2, . . . , Bn) with envy graph H where B is also c-EFX, and H has no cycles.

Since the envy graph is acyclic, we can always find an unenvied player j and give
an arbitrary good g∗ from P to her. It is possible that this will cause another player i
to envy j in violation of 1

2 -EFX. In this case, we return all of i’s current bundle to P
and let i’s new bundle be just {g∗}. The key insight is that in order for i to go from
not envying j to envying j in violation of 1

2 -EFX, adding g∗ to Aj must have caused
vi(Aj) to at least double. We will use that fact, along with the subadditivity of vi, to
show that vi({g∗}) must be larger than i’s value for her bundle at the beginning of
the round. Thus if i envies any player, it remains consistent with 1

2 -EFX. Any envy
directed toward i will be fully EFX, since i will have only one good.

On each round, either P decreases in size (in the case where g∗ remains with j)
or the sum of utilities increases (in the case where g∗ is instead given to i because i
envies j in violation of 1

2 -EFX). Thus we can use a potential function argument to
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Algorithm A.1 Find an 1
2 -EFX allocation for n players with subadditive valuations

1: function GetApxEFXAllocation(n,m, (v1, . . . , vn))
2: P ← [m] . Initially, all goods are in the pool
3: for each i ∈ [n] do
4: Ai ← ∅
5: while P 6= ∅ do
6: g∗ ← pop(P ) . Remove an arbitrary good from P ,
7: j ← FindUnenviedPlayer(A1, A2, . . . , An) . and give it to an unenvied

player
8: Aj ← Aj ∪ {g∗}
9: if ∃i ∈ [n], g ∈ Aj such that vi(Ai) <

1
2vi(Aj\{g}) then

10: P ← P ∪Ai . Return i’s old allocation to the pool,
11: Aj ← Aj\{g∗} . and give i just {g∗}
12: Ai ← {g∗}
13: (A1, A2, . . . , An)← EliminateEnvyCycles(A1, A2, . . . , An) . Ensure the

envy graph is acyclic

14: return (A1, A2, . . . , An)

show that Algorithm A.1 terminates (although it may take a nonpolynomial number
of rounds).

Theorem A.2. For subadditive valuations, Algorithm A.1 returns a 1
2 -EFX allo-

cation.

Proof. We refer to each iteration of the while-loop as a round. We first show that
the partial allocation at the end of each round is 1

2 -EFX. Then we will show that the
algorithm is guaranteed to terminate.

Let A`
k be the bundle of player k at the beginning of round `, and let B`

k denote
the bundle of player k just before EliminateEnvyCycles is run on round `. Let A` =
(A`

1, . . . , A
`
n) and B` = (B`

1, . . . , B
`
n). In this proof, we use k and k′ to denote a

generic player; i and j refer exclusively to the variables in the while-loop.
We proceed by induction on `. Initially, all players have empty bundles, which

trivially satisfies 1
2 -EFX. Thus assume the partial allocation at the beginning of round

` is 1
2 -EFX. We will show that the partial allocation at the beginning of round `+ 1

is 1
2 -EFX. The partial allocation at the beginning of round ` + 1 A`+1 is equal to

EliminateEnvyCycles(B`). Thus by Lemma A.1, it suffices to show that B` is 1
2 -

EFX.
If the body of the if-statement (lines 10–12) is not executed, the allocation B` is

1
2 -EFX by definition. Thus assume the body of the if-statement is executed. Then
B`

j = A`
j , because g∗ was added and then removed. Thus for all k 6= i, B`

k = A`
k.

We say that a pair (k, k′) is 1
2 -EFX in B` if v(B`

k) ≥ 1
2v(Bk′\{g}) for all g ∈ B`

k′ .
We know that A` is 1

2 -EFX by assumption. Therefore since B`
k = A`

k for all k 6= i,
all pairs (k, k′) where k 6= i and k′ 6= i remain 1

2 -EFX in B`. Furthermore, since
B`

i = {g∗}, the pair (k, i) is 1
2 -EFX for all players k, since B`

i \{g} = ∅ for all g ∈ B`
i .

It remains only to show that the pairs (i, k) are 1
2 -EFX for all players k. We do

this by showing that vi(B
`
i ) > vi(A

`
i). The fact that this inequality is strict will be

important later in showing that the algorithm terminates.
We know that j was unenvied at the beginning of round `, so vi(A

`
i) ≥ vi(A

`
j).

Since the body of the if-statement executed, we also know that there exists g ∈
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A`
j ∪ {g∗} such that vi(A

`
i) <

1
2vi(A

`
j ∪ {g∗}\{g}). Thus vi(A

`
i) <

1
2vi(A

`
j ∪ {g∗}),

which will be all we need. Therefore,

vi(A
`
i) <

1

2
vi(A

`
j ∪ {g∗})(A.1)

≤ 1

2
(vi(A

`
j) + vi({g∗}))(A.2)

≤ 1

2
(vi(A

`
i) + vi({g∗})),(A.3)

where (A.2) follows from (A.1) due to vi being subadditive, and (A.3) follows from
(A.2) due to vi(A

`
i) ≥ vi(A`

j). Therefore,

vi(A
`
i)−

1

2
vi(A

`
i) <

1

2
vi({g∗}),

vi(A
`
i) < vi({g∗}),

vi(A
`
i) < vi(B

`
i ).

Consider an arbitrary player k 6= i. Since A` is 1
2 -EFX, we have vi(A

`
i) ≥

1
2vi(A

`
k\{g}) for all g ∈ A`

k. Since vi(B
`
i ) > vi(A

`
i) and B`

k = A`
k for all k 6= i,

we have vi(B
`
i ) ≥ 1

2vi(B
`
k\{g}) for all g ∈ B`

k as well. Therefore the pair (i, k) is
1
2 -EFX for all players k.

Thus every pair of players is 1
2 -EFX in B`, so B` is 1

2 -EFX. This shows that the
partial allocation at the end of each round is 1

2 -EFX, and so any allocation returned
by the algorithm is 1

2 -EFX.
It remains to show that Algorithm A.1 terminates. We use a potential function

argument. For round `, define

φ(`) =

n∑
k=1

v(A`
k).

We noted above that if round ` falls under Case 2, only i’s bundle changes, and we
have the strict inequality vi(B

`
i ) > vi(A

`
i). Therefore vi(A

`+1
i ) > vi(A

`
i). Thus if

round ` falls under Case 2, we have φ(`+ 1)− φ(`) > 0.
If round ` falls under Case 1, only j’s bundle changes, and we have vj(A

`+1
j ) ≥

vi(A
`
i). Therefore if round ` falls under Case 1, we have φ(`+ 1)− φ(`) ≥ 0.
In any round which falls under Case 1, |P | decreases by one. Therefore if m rounds

pass without Case 2 occurring, P becomes empty, and the algorithm terminates. Thus
while the algorithm has not terminated, Case 2 must occur at least once every m
rounds, and so φ(`+m)− φ(`) > 0 for all `.

The number of possible partial allocations is at most (n + 1)m: each good can
be given to one of the n players or left in the unallocated pool. Thus the number of
distinct values φ can take on is at most (n+ 1)m, and so φ can increase at most that
many times. Thus after m(n+ 1)m rounds, the algorithm must have terminated.

Finally, we briefly show that 1
2 -EFX and EF1 are incomparable, meaning that

neither property implies the other. Recall that an allocation A is EF1 if for all i, j
where Aj 6= ∅, there exists g ∈ Aj where vi(Ai) ≥ vi(Aj\{g}).

Consider the additive valuations on the left, and let A = ({a, b}, {c}). A is EF1
because v2(A2) ≥ v2(A1\{a}), but A is not 1

2 -EFX because v2(A2) < 1
2v2(A1\{b}).

Now consider the valuations on the right, and let A = ({a, b, c}, {d}). Then A
is not EF1, because v2(A2) < v2(A1\{g}) for all g ∈ A1, but A is 1

2 -EFX, because
v2(A2) ≥ 1

2v2(A1\{g}) for all g ∈ A1.
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a b c
player 1 3 1 0
player 2 3 0 1

a b c d
player 1 1 1 1 1
player 2 1 1 1 1

Appendix B. Additional proofs.

Proof of Theorem 4.1. To show that ≺++ specifies a total ordering, we need to
show that for any allocations A,B, and C, A ≺++ A is false, and that (A ≺++ B and
B ≺++ C) implies A ≺++ C.

We first show that A ≺++ A is false. The key fact is that for a given allocation
A, there is only one possible ordering of the players XA: were this not true, ≺++

could fail to produce a total ordering.15 Therefore on each iteration, the same player
is considered from each copy of A. Thus on each iteration, the two bundles compared
will be the same, so A ≺++ A never terminates until it passes through all ` ∈ [n] and
returns false at the very end.

It remains to show that (A ≺++ B and B ≺++ C) implies A ≺++ C. Suppose
A ≺++ B and B ≺++ C. Let `1, `2, and `3 be the iterations on which A ≺++ B,
B ≺++ C and A ≺++ C terminate, respectively. For x ∈ {1, 2, 3}, let ix = XA

`x
,

jx = XB
`x

, and kx = XC
`x

.
Since A ≺++ B terminates on iteration `1, we have v(Ai1) < v(Bj1) or |Ai1 | <

|Bj1 |. Similarly, since B ≺++ C terminates on iteration `2, we have v(Bi2) < v(Cj2)
or |Bi2 | < |Cj2 |.

First we argue that `3 ≥ min(`1, `2). Suppose ` < min(`1, `2): then A ≺++ B
and B ≺++ C do not terminate until after iteration `3. Therefore v(Ai3) = v(Bj3),
|Ai3 | = |Bj3 |, v(Bj3) = v(Ck3

), and |Bj3 | = |Ck3
|. Therefore v(Ai3) = v(Ck3

) and
|Ai3 | = |Ck3

|, so A ≺++ C could not have terminated on iteration `3, which is a
contradiction. Therefore `3 ≥ min(`1, `2). We proceed by case analysis.

Case 1: `1 < `2. SinceB ≺++ C did not terminate until after iteration `1, we have
v(Bj1) = v(Ck1

) and |Bj1 | = |Ck1
|. Therefore v(Ai1) < v(Ck1

) or |Ai1 | < |Ck1
|. We

know that A ≺++ C cannot have terminated prior to `1, since `3 ≥ min(`1, `2) = `1.
Therefore A ≺++ C will terminate on iteration `1 and return true, so A ≺++ C holds
in Case 1.

Case 2: `2 < `1. This case is similar. Since A ≺++ B did not terminate until after
iteration `2, we have v(Ai2) = v(Bj2) and |Ai2 | = |Bj2 |. Therefore v(Ai2) < v(Ck2

)
or |Ai2 | < |Ck2

|. We know that A ≺++ C cannot have terminated prior to `2, since
`3 ≥ min(`1, `2) = `2. Therefore A ≺++ C will terminate on iteration `2 and return
true, so A ≺++ C holds in Case 2.

Case 3: `1 = `2. In this case we have i1 = i2, j1 = j2, and k1 = k2. Therefore

v(Ai1) < v(Bj1) or
(
v(Ai1) = v(Bj1) and |Ai1 | < |Bj1 |

)
, and

v(Bj1) < v(Ck1
) or

(
v(Bj1) = v(Ck1

) and |Bj1 | < |Ck1
|
)
.

Note that v(Ai1) ≤ v(Bj1) and v(Bj1) ≤ v(Ck1
). Therefore if either v(Ai1) < v(Bj1)

or v(Bj1) < v(Ck1
), we have v(Ai1) < v(Ck1

). We know A ≺++ C cannot have
terminated before `1 = `2 since `3 ≥ min(`1, `2), so if v(Ai1) < v(Ck1

), A ≺++ C
terminates on iteration `1 and returns true.

15Consider two players with identical valuations and one good a, where v({a}) = 0. Let A =
(∅, {a}). Suppose both (1,2) and (2,1) are valid orderings of the players according to A, and suppose
we run A ≺++ A with the left-hand-side A using the ordering (1,2) and the right-hand-side A using
(2,1). Then at ` = 1, ∅ from the left-hand-side A will be compared with {a} from the right-hand-side
A, and A ≺++ A will return true.
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Thus assume v(Ai1) = v(Bj1) and v(Bj1) = v(Ck1
): then |Ai1 | < |Bj1 | and

|Bj1 | < |Ck1
|. Therefore v(Ai1) = v(Ck1

) and |Ai1 | < |Ck1
|, so A ≺++ C terminates

on iteration `1 and returns true. Therefore A ≺++ C in Case 3. This shows that
(A ≺++ B and B ≺++ C) implies A ≺++ C and completes the proof.

Proof of Theorem 5.3. Let Z be the set of all goods g where v({g}) = 0. Therefore
for all g ∈M\{Z}, we have v({g}) > 0, so v has nonzero marginal utility over the set
of goods M\{Z}.

Let A = (A1 . . . An) be the leximin allocation over M\{Z}. By Theorem 5.4, A
is EFX and PO over M\{Z}.

Let i be the minimum utility player in A. Define a new allocation B over all
of M where Bi = Ai ∪ {Z} and Bj = Aj for all j 6= i. Since v(Z) = 0, we have
v(Bj) = v(Aj) for all j. Therefore since i had minimum utility in A, i also has
minimum utility in B.

To see that B is EFX, consider arbitrary players j and k, and any g ∈ Bk. If i 6= k,
we have Ak = Bk. Since A is EFX, we have v(Bj) = v(Aj) ≥ v(Ak\{g}) = v(Bk\{g}).
If i = k, then v(Bj) ≥ v(Bk) ≥ v(Bk\{g}), since i has minimum utility in B. This
shows that B is EFX.

To see that B is PO, observe that the way the goods in Z are allocated has no
effect on the values of the bundles. Therefore the goods in Z have no effect on the
Pareto optimality of the allocation, so the Pareto optimality of B follows directly from
the Pareto optimality of A.
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